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Iteration Methods for Finding all Zeros of 
a Polynomial Simultaneously 

By Oliver Aberth 

Abstract. Durand and Kerner independently have proposed a quadratically convergent 
iteration method for finding all zeros of a polynomial simultaneously. Here, a new deriva- 
tion of their iteration equation is given, and a second, cubically convergent iteration method is 
proposed. A relatively simple procedure for choosing the initial approximations is described, 
which is applicable to either method. 

1. Introduction. Let P(z) be a monic polynomial of degree n with real or complex 
coefficients: 

P(z) = zn + C z'n1 + * ?+ C,_1Z + Cn. 

E. Durand [1, pp. 277-280] and I. 0. Kerner [2] independently have proposed an 
iteration method for finding all the zeros of P(z) simultaneously. Starting with n crude 
approximations to the zeros, their method proceeds by the repeated refinement of all 
approximations in a uniform manner, and the order of convergence is quadratic. 

Here, we give an alternate way of deriving their iteration equation, and propose 
a second method for finding all the zeros of P(z), with a cubic order of convergence. 
Both methods were computer-tested on a variety of polynomials, with degrees up 
to 20. When the initial approximations were chosen as described below, failure of 
convergence was never observed, although convergence toward a multiple zero was 
slow. In a later section, it is shown that if the zeros of the polynomial and initial 
approximations both display certain symmetries, then the methods may fail. However, 
with proper precautions these cases occur with quite small probability. 

2. The Iteration Method of Durand and Kerner. Let zi, i = 1, *I * , n, be 
approximations to the zeros of P(z) just before beginning a cycle of iteration, and 
Zi + /AZi i = 1 . , n, be the approximations after completion of the cycle. We wish 
to choose zi + Azi closer to the zeros. Ideally, we would like to have 

n 

(1) fJ (z - [zi + Azi]) = P(z), 

for then zi + Azi would equal the zeros. Expanding the left side of (1) in powers 
of Az, we obtain 
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n n n 

H (z- Zk)Z AZi H (Z -Zk) 
(2) k=1 k=l ;kF i 

n n 

+ E A AZ Az HI (Z -Zk) = P(z). 

To obtain an iteration equation, we drop all terms in powers of Az higher than the 
first: 

n n n 

H (Z -Zk) E AZi H (Z -Zk) =P(z). 
k=1 i=l k=1 ;k76i 

This polynomial equation is easy to solve for Azi. Set z equal successively to zj, * z ,Zn, 

and obtain 
n 

-AZj H (Zi - Zk) = P(z, ), i = 1, * , n. 
k=1 ;k5idi 

Finally, if we define Q(z) to be the polynomial given by 
n 

(3) Q(Z)= Jj (Z- Zk), 
k=1 

we obtain the equation 

(4) Azi = -P(zX/Q'(zJ), i = 1, , n. 

If P(z) has the zeros wi, i = 1, * * , n, so that 
n 

(5) P(z)= j (z - Wk), 
k=1 

then we may rewrite (4) in the form 
n n 

(6) Azi = H (Wk Z- ) H (Zk - Zi). 
k=1 k=1;k5! 

3. Second Iteration Method. As a preliminary to the derivation of the second 
iteration equation, we obtain the formula of Newton's method in an unusual way. 

We utilize the identification of complex numbers with vectors in the z-plane, 
whereby the vector originating at the point z' and terminating at z" is assigned the 
complex number z" - z'. The expression 

(z - Wo)/IZ - Wo12 = 1/(z - WO) 

then defines a vector field such that the vector at the point z is directed away from the 
point wo, and has magnitude inversely proportional to the distance from wo. Because 
of the obvious analogy from electrostatics, this field may be called the field of a unit 
plus charge at the point wo (cf. [3, pp. 7-9]). If unit plus charges are situated at the 
n points w1, w2, , wn, then the resulting vector field is 

n 

(7) A 1/(z - wi) = (P'(z)/P(z)), 

where P(z) is given by (5). When several of the numbers wi are identical, say w, = 
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w2 = * * * = wi, so that P(z) has a zero of multiplicity m at w1, several of the terms 
on the left side of (7) are equal, and it is as if there are m units of charge at the point wl. 

Given a polynomial P(z), we may attempt to locate a zero by sampling the field 
defined by the right side of (7) at some point zi, and by then finding the point where 
a single unit charge would be located if it were causing this field. (This amounts to 
assuming that there is only one term on the left side of (7), a reasonable approximation 
when zi is near a simple zero.) Sampling at this new point, the cycle then could be 
repeated. Calling the new point zi + Azi , after taking conjugates, we have the equation 

1AZi - (Zi + Azi)) = P (Zi)/P(Zi), 

which leads to the formula of Newton's method 

(8) Azi = -P(Zi)/P'(zi). 

Now, if we tried to locate all zeros of P(z) by simultaneously applying (8) to n 
different sampling points z1, * * *, zn, we would fail, likely as not, since several points 
zi could easily converge to the same (simple) zero of P(z). To avoid this, we assign 
a unit minus charge at each sampling point. The idea here is that when a sampling 
point zi is near a simple zero, the field from the minus charge at zi should counteract 
that from the plus charge at the zero, preventing a second sampling point from con- 
verging to this zero. After taking conjugates, our iteration equation for the ith 
sampling point now is 

1 P'(zi) + -1 
Zi (Zi + Azi) P(Zi) k=l ;kpi Zi Zk 

so that 

(9) Azi = P(zi)/ (P(zi) E 
I 

_ P1(Zi);Z 
k=l ;k-i Zi Zk 

In terms of the polynomial Q(z) (cf. (3)), the sum appearing in (9) may be written 
as Q"(zX)/2Q'(zi), and we obtain 

(10) A-p6zi, 
= 

/P(z)Q"(Zi) - P(zi)Q(zi) 

A purely algebraic derivation of the iteration equation (9) may be arrived at in the 
following manner. Referring to the Durand-Kerner formula (4), set Ri(z) = 

-P(Z)/llk.i (Z - Zk), i = 1, *... , n. When Newton's method is applied to the rational 
function Ri(z) at the point zi, 

Azi = -Ri(zi)/R'(zi), i = 1, n. , 

Eq. (9) is obtained. 

4. Choosing the Initial Approximations. Two circumstances that interfere with 
convergence come to mind. The requirement that the approximations be distinct is 
necessary for either (6) or (9) to be meaningful. However, it is not impossible for two 
neighboring approximations to move to the same point after a cycle of iteration, 
especially on the earlier cycles when I AziI is generally larger. Nevertheless, this must 
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be an unlikely occurrence, and, in any case, provisions to detect and correct an 
accident like this can be incorporated in the computer program. 

The other difficulty arises when the zeros of P(z) are symmetrically positioned in 
the complex plane with respect to some line L, and the initial approximations happen 
to be chosen so they also are symmetrically placed with respect to this line. In this 
case, some of the approximations may fail to converge to a zero. For the iteration 
method of Durand and Kerner, Eq. (6) for Az, implies that the successive approxima- 
tions will preserve their symmetry with respect to the line L. That this is also true for 
the second method is apparent from its field definition. Hence, when the number of 
the approximations on L exceeds the number of zeros there (counting multiplicities), 
the surplus approximations cannot leave L and must oscillate along this line. Similarly, 
if fewer approximations than zeros of odd multiplicity are on L, then since approxi- 
mations not on L must approach L symmetrically, there must be some zeros on L 
which do not have approximations converge toward them. Of course, here small 
perturbations of the approximations caused by limited precision, rounding errors 
and the like, may act to destroy the symmetry and induce convergence. 

The most frequently encountered line of symmetry for the zeros of P(z) is, no 
doubt, the real axis, since this occurs whenever all coefficients of P(z) are real. Ac- 
cordingly, we avoided selecting the initial approximations so they displayed this 
symmetry. Our procedure for choosing them so they were reasonably close to the 
zeros of P(z) was as follows: Set z equal to w - c1/n, where cl is the coefficient of 
zn-1 of P(z). Then 

p(Z ) = W n + C Wn?2 + ? C+ W ? C, 

and there is no term in wn- 1. Assuming not all coefficients cl are zero, if r is the positive 
zero of the polynomial 

S(w) = Wn- _cC |n 
- 

. - I._C-| w - ICI, 

then all zeros of P(w) are inside or on the circle Iwi = r [3, pp. 122-123], and so the 
zeros of P(z) lie inside or on the circle Iz + c1/nI = r. The computer was programmed 
to compute ro, a rough estimate of r, and to take n equally spaced points on the circle 

1z + cl/nl = ro as the initial approximations. Thus, our initial approximations were 

Zk = -c1/n + roei ((2r/n)(k-l)+ao) k = 1, * * . , 

with the constant a0 taken as ir/2n so that symmetry with respect to the real axis can- 
not occur. Note that - cl/n equals the mean of the zeros of P(z). 

From these starting positions on the bounding circle, the observed general behavior 
of the successive approximations was about the same for both of the iteration methods 
described. Typically, the successive approximations moved inward in the direction 
of a nearby zero. Often, two approximations approached the same simple zero, with 
one moving off on later cycles toward a "free" zero. A multiple zero eventually 
attracted as many distinct approximations as its multiplicity, and in the complex 
plane the approximations tended to assume symmetrical positions around the zero, 
advancing slowly toward it. 

As an example of the computations, suppose P(z) is the polynomial 

Z- 10z4 + 43z3 - 104z2 150z - 100, 
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with zeros 1 ? 2i, 2, 3 ? i. Setting z equal to w + 2, P(w) is then w5 + 3w3 -6w2 + 
lOw. The polynomial S(w) is W5 -3w3 3 - 6w _ lOw, and testing the value of this 
polynomial at the successive positive integers 1, 2, 3, , we find S(2) < 0, S(3) > 0. 
Taking ro as 3, the initial approximations are 

Zk = 2 + 3e'((2r/5)(k-l)+1r/10) k = 1, 2, 3, 4, 5. 

With these initial approximations and high-precision computation, the first iteration 
method gives approximations whose real and imaginary parts are within 10-10 of 
the corresponding parts of a zero after nine iteration cycles. To attain the same accur- 
acy, the second iteration method requires only six iteration cycles.. 

5. A Bound on the Error of the Approximation. In a recent article [4], Brian T. 
Smith gives a useful bound on the error of the approximations z, to the zeros of a 
polynomial P(z). He shows (Corollary 1) that if the circular regions F, are defined by 

rF: Iz - zi < n IP(z,/Q'(z,)J, i = 1, 2, ... , n, 

then the union of these regions contains all the zeros of P(z). Any connected com- 
ponent consisting of just k circles contains exactly k zeros of P(z). For the method of 
Durand and Kerner, a slightly superior definition of the regions ri may be obtained 
from the first equation on p. 664 of Smith's article: 

ri: Iz - (zi + AzJ)I ? (n - 1) jlzAJ, i = 1, 2, n , 

with Azi given by (4). 
If E equals the maximum of the radii of the circles F,, and these circles do not 

overlap, then each ri centerpoint is a zero approximation with error < E. If the 
overlap of the circles is not investigated, the more modest bound (2n - 1)E can be used. 

6. Orders of Convergence. If we define the point Z as (z1, Z2, - , Zn), both 
iteration methods may be written as 

Z = zi + Azi = Fi(Z), i = 1, 2, , n, 

for appropriate definitions of the functions F,. When all zeros wi are distinct, these 
functions may be expanded in a Taylor series about the point W = (w1, w2, Wn), 
obtaining 

F (Z) = 
W+ 

? aF(W 
w )F+W1 

_____I 

a F( w) (Z_ Wk) 

? 
* - + 

E I(~- ) - ____ - 3(k 
i=1 ai2 j,k;=1 Ozi OZA 

Previously, Kerner showed that for Fi defined from (4), all first partials are zero, but 
not all second partials, so the successive iterates converge quadratically for an initial 
approximation point Z sufficiently close to W. Similarly, for Fi defined from (10), 
all first and second partials are zero but not all third partials, so, in this case, the 
successive iterates converge cubically. Moreover, convergence is assured if the point 
Z is sufficiently close to the point W. 

To estimate the slower rate of convergence toward a multiple zero, we make the 
following assumptions: P(z) has a single multiple zero, which, for convenience, we 
take to be at the origin. Approximations converging toward a simple zero have 
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reached their zero, and approximations converging toward the origin have reached 
positions which are evenly spaced on some circle jzj = p. These assumptions amount 
to setting P(z) = zm, where m is the multiplicity of the zero at the origin, and Q(z) = 
z - pmei". Referring to (4) and (10), we find that the approximations converging 
toward the origin will move directly toward this zero on each cycle, always reducing 
their distance away by the fraction 1/rm for the first method, and 2/(m + 1) for the 
second. 
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